服務(wù)熱線
86-21-63504668
歡迎您,來到上海雙旭電子有限公司!
PROUCTS LIST
振動測試儀原理用途
振動測試儀是一種能測量機械、物體等振動的測量儀器。比如測振儀、動平衡儀、振動測試與模態(tài)分析儀都算是振動測試儀。振動測試儀可與壓電加速度傳感器組成振動測量系統(tǒng),可測量加速度、速度、位移。對間斷的多次隨機的不同大小的振動,可將正峰值、負峰值、峰峰值及有效值的zui大值保持無限長時間。例如多點爆破的振動zui大值測量。具有*報警功能??蓪γ總€測試數(shù)據(jù)設(shè)置報警值,繼電器觸點輸出。
振動傳感器vibration transducer
定義:能感受機械運動振動的參量(振動速度、頻率,加速度等)并轉(zhuǎn)換成可用輸出信號的傳感器。
所屬學科:機械工程(一級學科) ;傳感器(二級學科) ;物理量傳感器(三級學科)
傳感器的機械接收原理
振動傳感器在測試技術(shù)中是關(guān)鍵部件之一,它的作用主要振動傳感器原理是將機械量接收下來,并轉(zhuǎn)換為與之成比例的電量。由于它也是一種機電轉(zhuǎn)換裝置。所以我們有時也稱它為換能器、拾振器等。振動傳感器并不是直接將原始要測的機械量轉(zhuǎn)變?yōu)殡娏浚菍⒃家獪y的機械量做為振動傳感器的輸入量,然后由機械接收部分加以接收,形成另一個適合于變換的機械量,zui后由機電變換部分再將變換為電量。因此一個傳感器的工作性能是由機械接收部分和機電變換部分的工作性能來決定的。
1、相對式機械接收原理
由于機械運動是物質(zhì)運動的zui簡單的形式,因此人們zui先想到的是用機械方法測量振動,從而制造出了機械式測振儀(如蓋格爾測振儀等)。傳感器的機械接收原理就是建立在此基礎(chǔ)上的。相對式測振儀的工作接收原理是在測量時,把儀器固定在不動的支架上,使觸桿與被測物體的振動方向一致,并借彈簧的彈性力與被測物體表面相接觸,當物體振動時,觸桿就跟隨它一起運動,并推動記錄筆桿在移動的紙帶上描繪出振動物體的位移隨時間的變化曲線,根據(jù)這個記錄曲線可以計算出位移的大小及頻率等參數(shù)。由此可知,相對式機械接收部分所測得的結(jié)果是被測物體相對于參考體的相對振動,只有當參考體不動時,才能測得被測物體的振動。這樣,就發(fā)生一個問題,當需要測的是振動,但又找不到不動的參考點時,這類儀器就無用武之地。例如:在行駛的內(nèi)燃機車上測試內(nèi)燃機車的振動,在地震時測量地面及樓房的振動……,都不存在一個不動的參考點。在這種情況下,我們必須用另一種測量方式的測振儀進行測量,即利用慣性式測振儀。
2、慣性式機械接收原理
慣性式機械測振儀測振時,是將測振儀直接固定在被測振動物體的測點上,當傳感器外殼隨被測振動物體運動時,由彈性支承的慣性質(zhì)量塊將與外殼發(fā)生相對運動,則裝在質(zhì)量塊上的記錄筆就可記錄下質(zhì)量元件與外殼的相對振動位移幅值,然后利用慣性質(zhì)量塊與外殼的相對振動位移的關(guān)系式,即可求出被測物體的振動位移波形。
在工程振動測試領(lǐng)域中,測試手段與方法多種多樣,但是按各種參數(shù)的測量方法及測量過程的物理性質(zhì)來分,可以分成三類。
1、機械式測量方法
震動傳感器將工程振動的參量轉(zhuǎn)換成機械信號,再經(jīng)機械系統(tǒng)放大后,進行測量、記錄,常用的儀器有杠桿式測振儀和蓋格爾測振儀,它能測量的頻率較低,精度也較差。但在現(xiàn)場測試時較為簡單方便。
2、電測方法
將工程振動的參量轉(zhuǎn)換成電信號,經(jīng)電子線路放大后顯示和記錄。電測法的要點在于先將機械振動量轉(zhuǎn)換為電量(電動勢、電荷、及其它電量),然后再對電量進行測量,從而得到所要測量的機械量。這是目前應(yīng)用得zui廣泛的測量方法。 上述三種測量方法的物理性質(zhì)雖然各不相同,但是,組成的測量系統(tǒng)基本相同,它們都包含拾振、測量放大線路和顯示記錄三個環(huán)節(jié)。
(1).拾振環(huán)節(jié)。把被測的機械振動量轉(zhuǎn)換為機械的、光學的或電的信號,完成這項轉(zhuǎn)換工作的器件叫傳感器。
(2).測量線路。測量線路的種類甚多,它們都是針對各種傳感器的變換原理而設(shè)計的。比如,專配壓電式傳感器的測量線路有電壓放大器、電荷放大器等;此外,還有積分線路、微分線路、濾波線路、歸一化裝置等等?! ?BR>(3).信號分析及顯示、記錄環(huán)節(jié)。從測量線路輸出的電壓信號,可按測量的要求輸入給信號分析儀或輸送給顯示儀器(如電子電壓表、示波器、相位計等)、記錄設(shè)備(如光線示波器、磁帶記錄儀、X—Y 記錄儀等)等。也可在必要時記錄在磁帶上,然后再輸入到信號分析儀進行各種分析處理,從而得到zui終結(jié)果。
3、光學式測量方法
將工程振動的參量轉(zhuǎn)換為光學信號,經(jīng)光學系統(tǒng)放大后顯示和記錄。如讀數(shù)顯微鏡和激光測振儀等。
振動傳感器的機電變換原理
一般來說,振動傳感器在機械接收原理方面,只有相對式、慣性式兩種,但在機電變換方面,由于變換方法和性質(zhì)不同,其種類繁多,應(yīng)用范圍也極其廣泛?! ≡诂F(xiàn)代振動測量中所用的傳感器,已不是傳統(tǒng)概念上獨立的機械測量裝置,它僅是整個測量系統(tǒng)中的一個環(huán)節(jié),且與后續(xù)的電子線路緊密相關(guān)。 由于傳感器內(nèi)部機電變換原理的不同,輸出的電量也各不相同。有的是將機械量的變化變換為電動勢、電荷的變化,有的是將機械振動量的變化變換為電阻、電感等電參量的變化。一般說來,這些電量并不能直接被后續(xù)的顯示、記錄、分析儀器所接受。因此針對不同機電變換原理的傳感器,必須附以專配的測量線路。測量線路的作用是將傳感器的輸出電量zui后變?yōu)楹罄m(xù)顯示、分析儀器所能接受的一般電壓信號。因此,振動傳感器按其功能可有以下幾種分類方法:
1>按機械接收原理分:相對式、慣性式;
2>按機電變換原理分:電動式、壓電式、電渦流式、電感式、電容式、電阻式、光電式;
3>按所測機械量分:位移傳感器、速度傳感器、加速度傳感器、力傳感器、應(yīng)變傳感器、扭振傳感器、扭矩傳感器?! ?BR>以上三種分類法中的傳感器是相容的。
振動傳感器的分類
1、相對式電動傳感器
電動式傳感器基于電磁感應(yīng)原理,即當運動的導(dǎo)體在固定的磁場里切割磁力線時,導(dǎo)體兩端就感生出電動勢,因此利用這一原理而生產(chǎn)的傳感器稱為電動式傳感器。相對式電動傳感器從機械接收原理來說,是一個位移傳感器,由于在機電變換原理中應(yīng)用的是電磁感應(yīng)電律,其產(chǎn)生的電動勢同被測振動速度成正比,所以它實際上是一個速度傳感器。
2、電渦流式傳感器
電渦流傳感器是一種相對式非接觸式傳感器,它是通過傳感器端部與被測物體之間的距離變化來測量物體的振動位移或幅值的。電渦流傳感器具有頻率范圍寬(0~10 kHZ),線性工作范圍大、靈敏度高以及非接觸式測量等優(yōu)點,主要應(yīng)用于靜位移的測量、振動位移的測量、旋轉(zhuǎn)機械中監(jiān)測轉(zhuǎn)軸的振動測量。
3、電感式傳感器
依據(jù)傳感器的相對式機械接收原理,電感式傳感器能把被測的機械振動參數(shù)的變化轉(zhuǎn)換成為電參量信號的變化。因此,電感傳感器有二種形式,一是可變間隙,二是可變導(dǎo)磁面積。
4、電容式傳感器
電容式傳感器一般分為兩種類型。即可變間隙式和可變公共面積式。可變間隙式可以測量直線振動的位移??勺兠娣e式可以測量扭轉(zhuǎn)振動的角位移。
5、慣性式電動傳感器
慣性式電動傳感器由固定部分、可動部分以及支承彈簧部分所組成。為了使傳感器工作在位移傳感器狀態(tài),其可動部分的質(zhì)量應(yīng)該足夠的大,而支承彈簧的剛度應(yīng)該足夠的小,也就是讓傳感器具有足夠低的固有頻率。根據(jù)電磁感應(yīng)定律,感應(yīng)電動勢為:u=Blx&r式中B為磁通密度,l為線圈在磁場內(nèi)的有效長度,r x&為線圈在磁場中的相對速度。從傳感器的結(jié)構(gòu)上來說,慣性式電動傳感器是一個位移傳感器。然而由于其輸出的電信號是由電磁感應(yīng)產(chǎn)生,根據(jù)電磁感應(yīng)電律,當線圈在磁場中作相對運動時,所感生的電動勢與線圈切割磁力線的速度成正比。因此就傳感器的輸出信號來說,感應(yīng)電動勢是同被測振動速度成正比的,所以它實際上是一個速度傳感器。
6、壓電式加速度傳感器
壓電式加速度傳感器的機械接收部分是慣性式加速度機械接收原理,機電部分利用的是壓電晶體的正壓電效應(yīng)。其原理是某些晶體(如人工極化陶瓷、壓電石英晶體等,不同的壓電材料具有不同的壓電系數(shù),一般都可以在壓電材料性能表中查到。)在一定方向的外力作用下或承受變形時,它的晶體面或極化面上將有電荷產(chǎn)生,這種從機械能(力,變形)到電能(電荷,電場)的變換稱為正壓電效應(yīng)。而從電能(電場,電壓)到機械能(變形,力)的變換稱為逆壓電效應(yīng)。因此利用晶體的壓電效應(yīng),可以制成測力傳感器,在振動測量中,由于壓電晶體所受的力是慣性質(zhì)量塊的牽連慣性力,所產(chǎn)生的電荷數(shù)與加速度大小成正比,所以壓電式傳感器是加速度傳感器。
7、壓電式力傳感器
在振動試驗中,除了測量振動,還經(jīng)常需要測量對試件施加的動態(tài)激振力。壓電式力傳感器具有頻率范圍寬、動態(tài)范圍大、體積小和重量輕等優(yōu)點,因而獲得廣泛應(yīng)用。壓電式力傳感器的工作原理是利用壓電晶體的壓電效應(yīng),即壓電式力傳感器的輸出電荷信號與外力成正比。
8、阻抗頭
阻抗頭是一種綜合性傳感器。它集壓電式力傳感器和壓電式加速度傳感器于一體,其作用是在力傳遞點測量激振力的同時測量該點的運動響應(yīng)。因此阻抗頭由兩部分組成,一部分是力傳感器,另一部分是加速度傳感器,它的優(yōu)點是,保證測量點的響應(yīng)就是激振點的響應(yīng)。使用時將小頭(測力端)連向結(jié)構(gòu),大頭(測量加速度)與激振器的施力桿相連。從“力信號輸出端"測量激振力的信號,從“加速度信號輸出端"測量加速度的響應(yīng)信號。注意,阻抗頭一般只能承受輕載荷,因而只可以用于輕型的結(jié)構(gòu)、機械部件以及材料試樣的測量。無論是力傳感器還是阻抗頭,其信號轉(zhuǎn)換元件都是壓電晶體,因而其測量線路均應(yīng)是電壓放大器或電荷放大器。
9、電阻應(yīng)變式傳感器
電阻式應(yīng)變式傳感器是將被測的機械振動量轉(zhuǎn)換成傳感元件電阻的變化量。實現(xiàn)這種機電轉(zhuǎn)換的傳感元件有多種形式,其中zui常見的是電阻應(yīng)變式的傳感器。